

Infrastructure capacities and needs for hazardous waste in Australia

Presentation to Waste 2015, Coffs Harbour, 7 May 2015

The project

Commonwealth Department of the Environment project

commitment in National Waste Policy

Undertaken by a consortium of:

- blue environment REC RANDELL ENVIRONMENTAL CONSULTING

Three parts:

- 20 year projections of hazardous waste arisings and fates
- estimate Australia's current infrastructure capacity & distribution
- combine these results to compare current capacities with future needs

This presentation

- large and unfinished project (currently at draft report stage)
- will attempt to scan it and cover interesting bits

Hazardous waste is?

Materials subject to higher levels of jurisdictional regulation

- trackable, listed, prescribed, controlled or regulated waste
- A few other materials not (yet) so controlled
 - new persistent organic pollutants declared under Stockholm Convention
 - contaminated biosolids
 - lithium ion batteries

Groups analysed based on NEPM 15 classification

disaggregated a few key groups

Hazardous waste groups

	Waste group	Closest NEPM		Waste group	Closest NEPM
		category			category
1	Plating & heat treatment	А	16	PFOS	M160a
2	Acids	В	17	POP-BDEs	M160b
3	Alkalis	С	18	HBCD	M160c
4	Mercury & compounds	D120	19	НСВ	M160d
5	Lead & compounds	D220	20	Other organic chemicals	Other M
6	Non-toxic salts	D300	21	Contaminated soils	N120
7	Other inorganic chemicals	Other D	22	Contaminated biosolids	N205a
8	Reactive chemicals	E	23	Other industrial treatment residues	N205b
9	Paints, resins, inks, organic sludges	F	24	Asbestos	N220
10	Organic solvents	G	25	Other soil/sludges	Other N
11	Pesticides	Н	26	Clinical & pharmaceutical	R
12	Oils	J	27	Tyres	T140
13	Animal effluent and residues (+ food processing waste)	K100	28	Other miscellaneous	Other T
14	Grease trap waste	K110	29	Lithium-ion batteries	n/a
15	Tannery & wool scouring wastes	K140 & 190			

Projections method

Looked for pre-existing projections

Considered

- historical data, including 'arisings' (tonnages), industry sources, fates
- likely futures of industry sources
- projected population and economic growth
- opinions of industry and government
- current stockpiles

Significant uncertainties

best, high and low estimates

Jurisdictional data

Jurisdiction	Date range	Source industry	Fate	Comments
ACT	2013			Data collated by waste type
NSW	2010-2014	\checkmark	\checkmark	Full 'data dump' (280,000 entries)
NT	2012-2014		\checkmark	Covered only inter-state transfers
Qld	1999-2013	\checkmark	1	Full 'data dump' of 30 files, each with up to 83 worksheets, each with up to 65,000 entries
SA	2006-2014	\checkmark		Data collated by waste type
Tas	2012-2013			Covered only inter-state transfers
Vic	2003-2014	\checkmark	\checkmark	Full 'data dump' (1.6 million entries)
WA	1999-2014		\checkmark	Full 'data dump' (1.3 million entries)

Challenges included ...

- multiple counting; varying methods for classifying wastes, sources and fates; apparent differences in user interpretations of their waste; storage release spikes; varying measurement methods (t, m³, items)
- establishing a representative baseline

Historical data - asbestos

1997-98

1998-99

996-97

. |

1999-00 2000-01 2001-02

2002-03 2003-04

2005/06

2004/05

2006/07

2007-08

2008-09

2012-1 2013-1/

0

995-96

÷,

More selected historical data

RANDELL ENVIRONMENTAL CONSULTING

Hazwaste tonnes & fate, 2012-13

■ Landfill ■ Recycling ■ Chemical/ physical treatment ■ Biodegradation ■ Incineration ■ Storage or transfer ■ Other or not stated

Note: based on data from NSW, Qld and Vic only

Selected projections

ENVIRONMENTAL

Significant increase likely with coal seam gas expansion

Other inorganic chemicals

In high scenario, stockpiles of spent pot lining are processed

Oils

Best estimate has strong increases in WA & Qld (mining); stable elsewhere

ENVIRONMENTAL

New Stockholm waste projections

General assumption – ratification by 2015-16 (including low concentration limit)

Sources: fire-fighting foams& washwaters; biosolids (high case)

Source: recycled plastics in waste electrical & electronic equipment

Sources: expandable polystyrene and, in high case, biosolids

Source: Orica stockpile in Sydney

More selected projections

Based on estimated exceedances of Vic C3 levels. High case assumes release of large contaminated Victorian stockpile

Best estimate is based on an industry projection

Collated best estimate

Other miscellaneous Tyres Clinical & pharmaceutical Other soil/sludges Asbestos Other industrial treatment residues Contaminated biosolids Contaminated soils Other organic chemicals HCB HBCD POP-BDEs PFOS Tannery & wool scouring wastes Grease trap waste Animal effluent and residues (+ food processing waste) Oils Pesticides Organic solvents Paints, resins, inks, organic sludges Reactive chemicals Other inorganic chemicals Non-toxic salts Lead; lead compounds Mercury; mercury compounds Alkalis Acids

Plating & heat treatment

Population / 5

Lithium-ion batteries

REC RANDELL ENVIRONMENTAL CONSULTING

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

REC RANDELL ENVIRONMENTAL CONSULTING

High & low estimates

Infrastructure capacity assessment

- identified 126 companies with 240 sites
- face-to-face interviews with 23 large operators (response rate 92%)
- phone / email / online survey with others
- overall response rate of 64% (by site)

Questions about:

- equipment
- recent annual quantities
- capacity (without upgrade)
- plans
- stockpiles

RANDELL ENVIRONMENTAL

ASCEND

Infrastructure groups & receipts

		Est. currently	Est. potential
Hazardous waste infrastructure group	No. sites	received (kt/yr)	capacity (kt/yr)
Recovery: recycling and energy recovery (ER)			
Hazwaste packaging fac.	31	22	55
E-waste fac.	12	64	161
Oil fac.	10	279	580
Lead fac.	4	106	188
Mercury fac.	2	Withheld for confidentiality reasons	
Solvents/paints fac.	5	10	16
Solvents/paints fac. (ER)	1	Withheld for confidentiality reasons	
Spent pot lining fac.	5	Withheld for confidentiality reasons	
Organics fac.	11	191	249
Treatment			
CPT plant	49	1,159	1,559
Clinical waste fac. (T)	10	26	26
Soils treatment fac.	3	Withheld for confidentiality reasons	
Disposal: landfill, thermal destruction (TD)			
Hazwaste landfill fac.	11	257	321
Hazw. l'fill (NEPM code N, T)	24	409	728
POPs fac. (TD)	1	Withheld for confidentiality reasons	
Clinical waste fac. (TD)	6	17	30
Transfer station or temporary storage fac.	47	253	366

Note: large amounts of hazardous waste is received by non-specific infrastructure, e.g. grease trap & organics, contaminated soils, asbestos.

Key findings

New Stockholm POPs

- existing processing capacity is far below our best estimate (assuming ratification) of 42 kt of demand in 2034 and a high estimate of 209 kt/yr.
- three operators are exploring options using existing infrastructure.
- Chemical and physical treatment plants
 - falling demand due to decline in manufacturing (Vic, NSW)
 - infrastructure for mining, oil & gas waste needs to grow (Qld, WA)
- Spent pot lining from aluminium smelting
 - national stockpile of about 900 kt a problem given the industry's decline
 - we already have an orphaned stockpile of mercury waste
- Hazwaste landfill capacity
 - no impending shortage of hazwaste landfill capacity is apparent
 - risks from unforeseen events e.g. site fire, disasters, legal challenges

More key findings

Asbestos disposal

- abundant options, but high cost in rural areas leads to illegal dumping

Lithium ion batteries

- kilotonnes likely to be entering the waste stream by 2034
- there is a fire risk associated with this waste
- Exhaustion of national capacity is modelled for:
 - oil recycling around 2020
 - clinical waste around 2025
 - lead waste by 2031

Hazardous waste policy isn't always helping

- inconsistent levies drive interstate export
- lack of certainty impedes investment

REC RANDELL ENVIRONMENTAL CONSULTING

Joe Pickin

tel. 03 5426 3536

mob. 0403 562 621

joe.pickin@blueenvironment.com.au

www.blueenvironment.com.au